6th Lesson, Pathology

Principles of Postharvest Plant Disease Management

The basis for the control of postharvest diseases is based in <u>the time and mechanism</u> for the inhibition of fungal infection

Sources of decay Field	y-causing pathogens Storage		
Pathogens with air-borne	Pre-storage Packing treatments		
 spores: Botrytis cinerea (gray mold) Penicillium spp. (blue mold) Pathogens on the trees: Neofabraea, Phacidiopycnis Sphaeropsis Lasiodiplodia, Phomopsis Pathogens on the ground and in soils: Penicillium spp., Botrytis Geotrichum, Phytophthora Mucor spp. 	 Pathogens in water systems: Penicillium spp. Botrytis cinerea Geotrichum, Mucor spp. Pathogens on the line: Penicillium spp., Mucor Botrytis , Geotrichum others Pathogens in the air and on the wall: Penicillium spp., Geotrichum 		

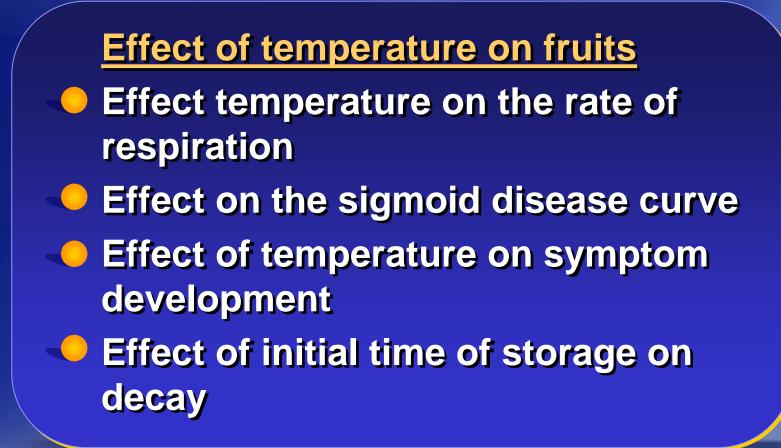
Control of diseases by prevention of development

Physical factors reducing the pathogen development after harvest

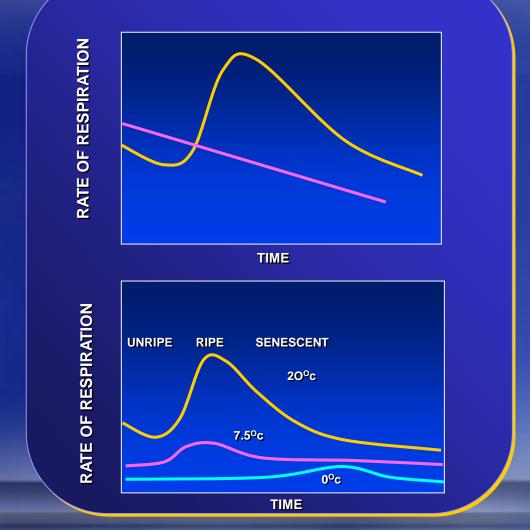
Modification of the physical environment after harvest

Removal of heat by rapid cooling systems (as hydro cooling or forced air cooling) reduce fungal attack will reduce ripening as well as microorganism initiation of development. Inhibition of disease development by physical treatment

 Temperature Controlled Atmosphere Modified Atmosphere Hypobaric conditions

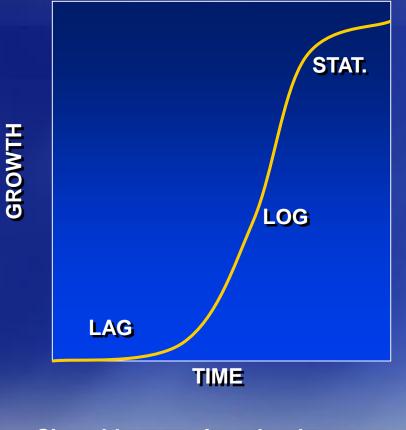

Cold temperature storage

The simplest way to reduced disease development is by modulating fruit ripening by reducing temperature


The effect of temperature after harvest may affect three factors:

- Fruit ripening
- Spore germination
- Disease and symptoms development

Effect of temperature on the host and symptom development

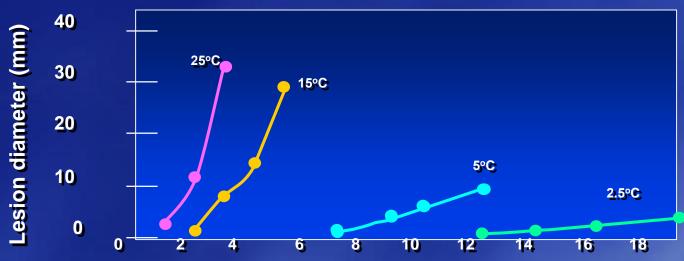

io eisr edi no eruisreqmei ioeiiE noiisriqeer

The effect of temperature on fungal germination and growth

Effect of temperature on pathogens •Optimal temperature 20-25 C •Maximal temperature 30-38 C •Minimal temperature 2-0 C

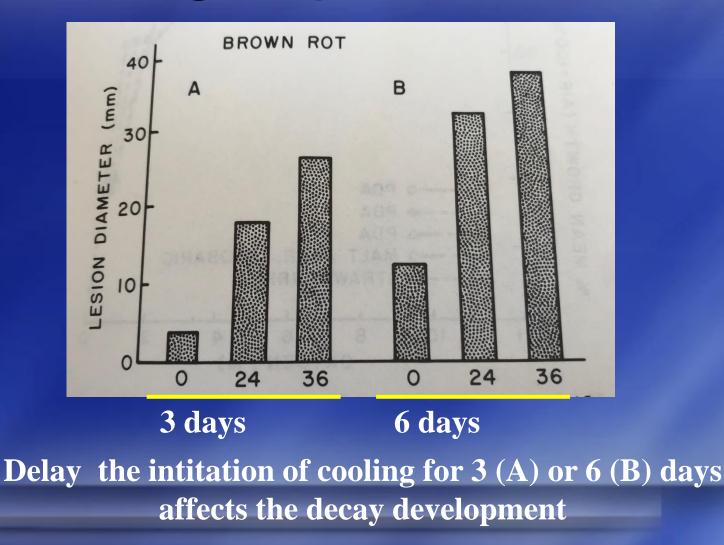
edt no erutereqmet toeffE svruo easealb biompia

Sigmoid curve of rot development


motomys no erutarequet io toeiiE themolevels secaesils io

Inoculated fruits were stored a different temperatures and evaluated after 8 days of storage at each temperature

motomys no eruterequet to toetta themolevels essests to


Inoculated fruits were stored a different temperatures and evaluated after every day at each temperature temperature

Brown rot

Days at indicated temperature

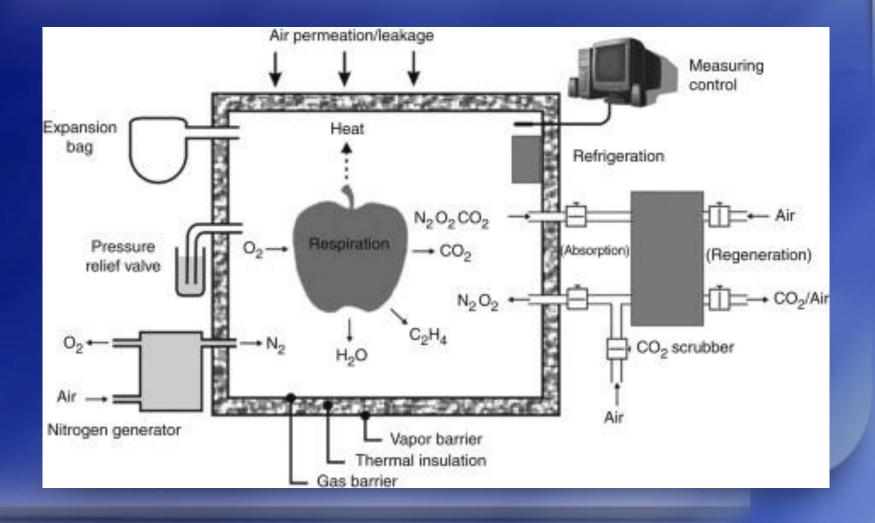
gninub yeseb to notisitini to toetta O 0 ts senseq to egenote to

Inhibition of disease development by physical treatment

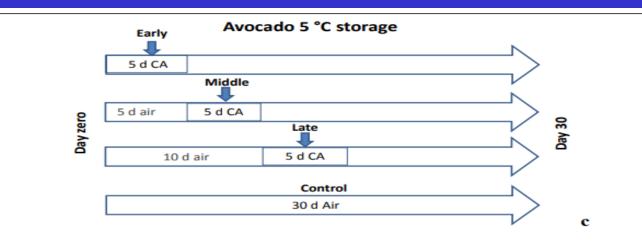
Temperature
Controlled Atmosphere
Modified Atmosphere
Hypobaric conditions

The effect of low O₂ and high CO₂ are considered to be <u>additive</u> to the effect of temperature <u>Control atmosphere (CA)</u> – generally refers to decreased O_2 and increased CO_2 concentrations, by a precise control of the gas composition.

<u>Modified atmosphere (MA)</u> – is used when the control of the storage atmosphere is not closely controlled, such as in plastic film packaging.



Corridor of CA storage rooms



China 2007

The Controlled atmosphere system

Schematic response to CA on ripening of avocado

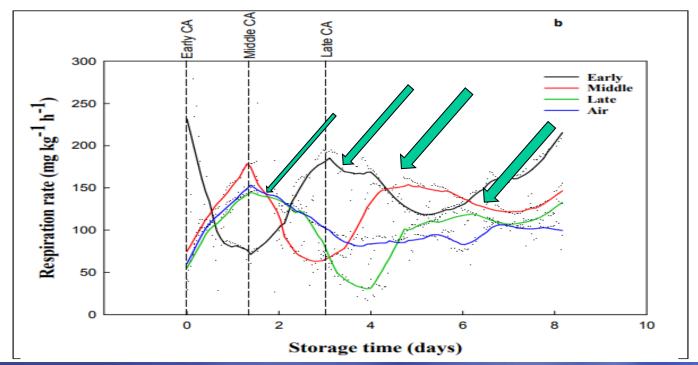
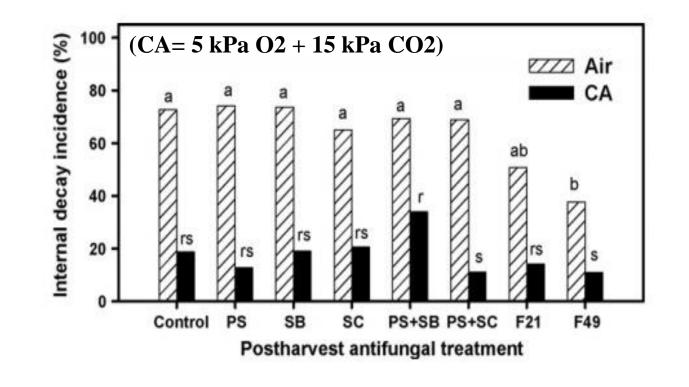
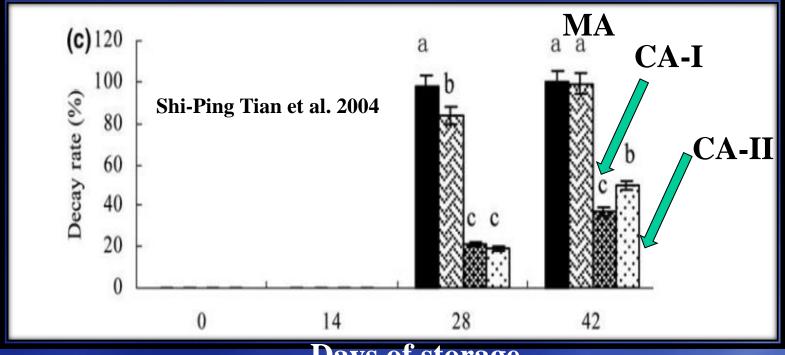



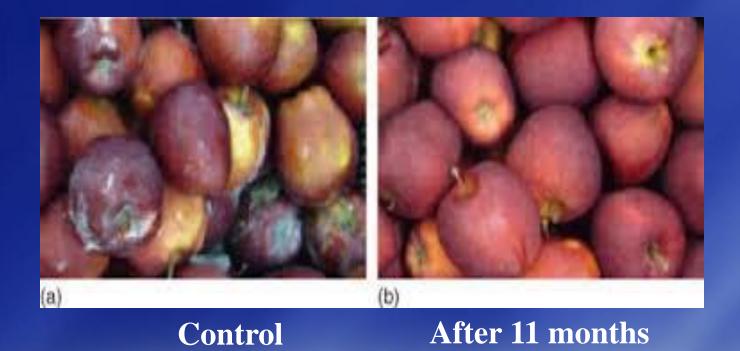
Table 1. General Summary of CA recommendations for fruits other than apples and pears

_


	Commodity	Temperature Range ¹ (°C)	CA ²		
			% O2	% CO ₂	Commercial use as of June, 2001
	Apricot	0-5	2-3	2-3	Country of the International Country of the
	Asian pear	0-5	2-4	0-1	Limited use on some cultivars
	Avocado	5-13	2-5	3-10	Used during marine transport
	Banana	12-16	2-5	2-5	Used during marine transport
	Blackberry	0-5	5-10	15-20	Used within pallet covers during transport
	Blueberry	0-5	2-5	12-20	Limited use during transport
	Cactus pear	5-10	2-3	2-5	
	Cherimoya & Atemoya	8-15	3-5	5-10	
	Cherry, sweet	0-5	3-10	10-15	Used within pallet covers or marine containers during transport
	Cranberry	2-5	1-2	0-5	
	Durian	12-20	3-5	5-15	
	Fig	0-5	5-10	15-20	Limited use during transport
	Grape	0-5	2-5	1-3	Incompatible with SO ₂ fumigation
			or		
			5-10	15-20	Limited use instead of SO ₂ for decay control during transport up to 4 weeks
	Grapefruit	10-15	3-10	5-10	
	Guava	5-15	2-5	0-1	
	Kiwifruit	0-5	1-2	3-5	Expanding use during transport and storage; C_2H_4 must be maintained below 20 ppb
	Lemon	10-15	5-10	0-10	
	Lime	10-15	5-10	0-10	
	Loguat	0-5	2-4	0-1	
	Lychee (litchi)	5-12	3-5	3-5	
	Mango	10-15	3-7	5-8	Increasing use during marine transport
	Nectarine	0-5	1-2 or	3-5	Limited use during marine transport
			4-6	15-17	Used to reduce chilling injury (interna breakdown) of some cultivars
	Olive	5-10	2-3	0-1	Limited use to extend processing season
	Orange	5-10	5-10	0-5	
	Papaya	10-15	2-5	5-8	
	Peach, clingstone	0-5	1-2	3-5	Limited use to extend canning season
	Peach, freestone	0-5	1-2 or	3-5	Limited use during marine transport
	neestone		4-6	15-17	Used to reduce incidence and severity o

Influence of postharvest antifungal treatment and CA on the incidence of internal decay on 'Wonderful' pomegranates (inoculated in the crown with *Botrytis cinerea* (*Tahiland*)

Influence of antifungal treatment, potassium sorbate (PS), sodium bicarbonate (SB), sodium carbonate (SC), mixture of PS and SB (PS + SB), mixture of PS and SC (PS + SC), fludioxonil at 21 °C (F21), and fludioxonil at 49 °C (F49) on the incidence of internal decay

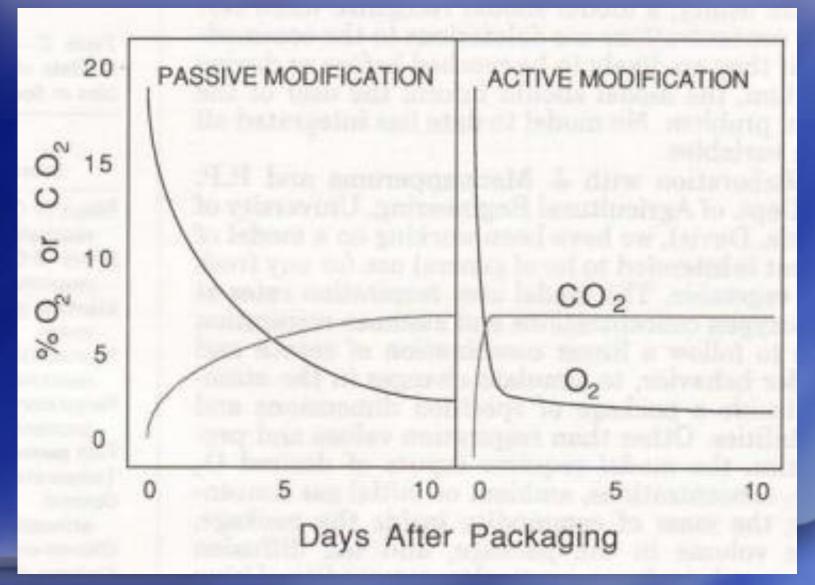

Effects of different storage conditions on decay of lychee fruit (China)

Days of storage

MAP, 0.03 mm thick polyethylene film bag (25 · 35 mm for 1 kg fruit, 15– 19% O2 + 2–4% CO2); CA-I, 5% O2 + 5% CO2; CA-II, fruit were stored in the high oxygen concentration atmosphere (70% O2 + 0% CO2) for the first week, then kept in 5% O2 + 5% CO2

Effect of CA on disease development

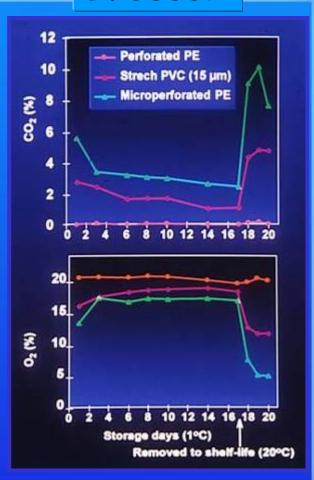
Factors affected by CA and MA on the fruit and disease development after harvest


General effects:

- 1. <u>Direct</u> way: prevention of ripening, reduced ethylene and reduced respiration
- 2. <u>Indirect</u> way: percent decay, inhibition of germination and growth

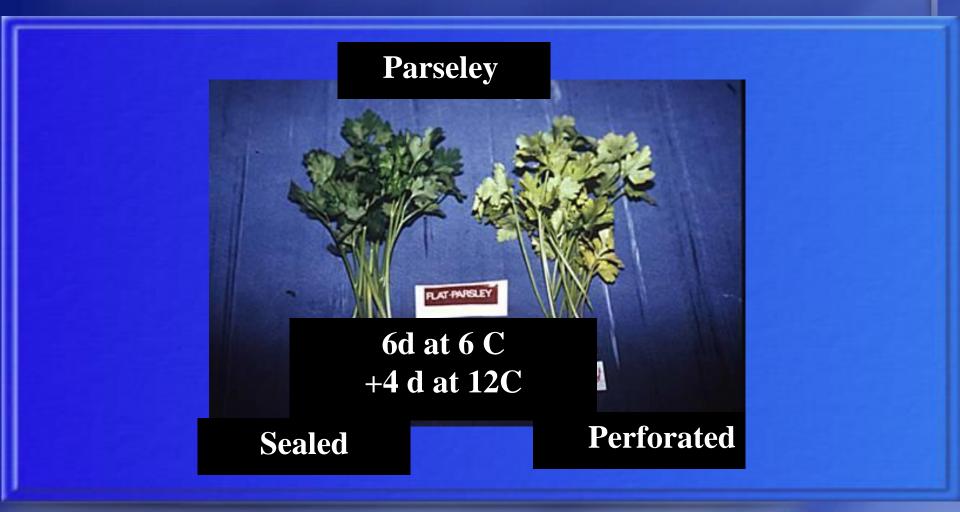
<u>Control atmosphere (CA)</u> – generally refers to decreased O_2 and increased CO_2 concentrations, by a precise control of the gas composition.

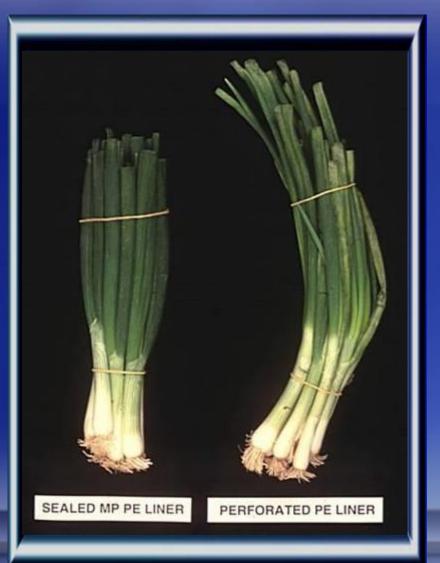
Modified atmosphere (MA) - is used when the control of the storage atmosphere is not closely controlled, such as in plastic film packaging.

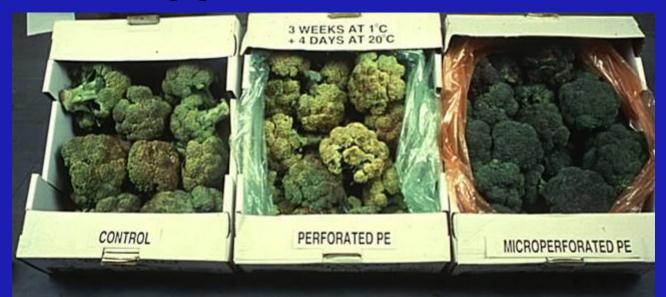

Development of Modified Atmosphere

MAP applied to individual inflorescence

Broccoli




Commercial MAP of broccoli


Delay of yellowing in parsley leaves by MAP

bns diworg-er isel io noizzerggue noino neerg ni gnivruo

MAP applied to bulk broccoli

Prevention of decay and yellowing

serversion of leaf sprouting in radishes

Commercial MAP of kiwi

Transportation of strawberries in CO₂ – enriched atmosphere – TransFresh (Tectroll) technology

Factors affecting disease development after harvest

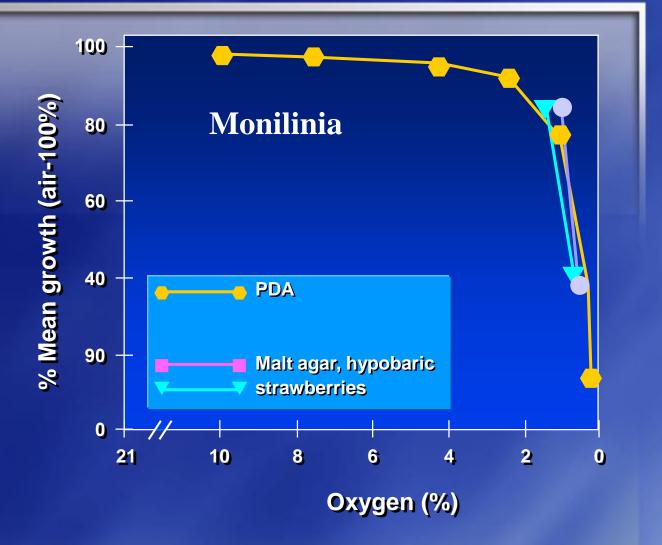
Post-harvest treatments

Effect of modified atmosphere

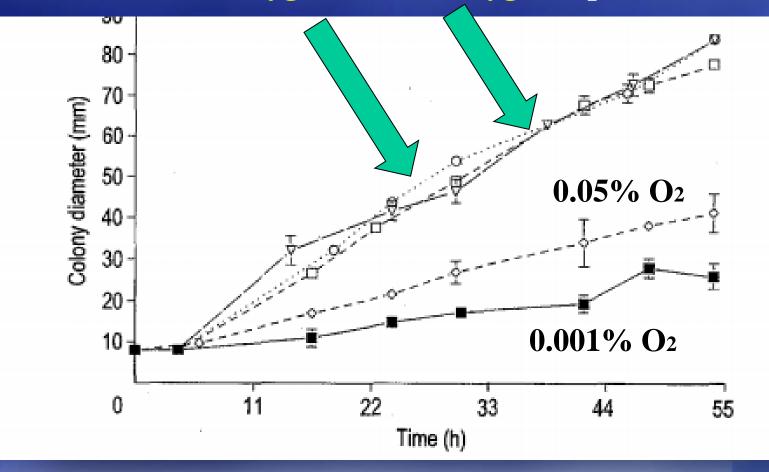
General effects:

- 1. Indirect way: prevention of ripening, reduced ethylene and reduced respiration.
- 2. Physiological disorders

Effect of Oxygen on fungal development


Effect of gases on fungal development

Effect of low oxygen


- 1. Under 4% O₂ fungal mycelium are affected
- 2. Under 1% oxygen the decay development is inhibited
- 3. Under 1% oxygen there are physiological effect on the fruit

Effect of low oxygen on growth of Botrytis in culture and in fruit.

All the tests were conducted at normal barometric pressure in an atmosphere of low oxygen

Colony diameter during growth of Rhizopus on malt extract, soya peptone, and agar (MESPA1) at constant oxygen concentrations ■ 0.001%, ◊ 0.5% oxygen, ○ 1.0% oxygen, ▼, 5.0% oxygen, □, 21% oxygen (Spain)

De Reu et al., 1995

Effect of high CO₂

Effect of high CO₂ on the development of postharvest disease

Factors affecting disease development after harvest

Botrytis is inhibited by CO2 higher than 10%

Monilinia is inhibited by CO₂ levels between 30-50%

The concentrations used range between 10-20%. Higher concentrations may affect the taste of the fruits (nectarins) or the color of the fruit (grapes)

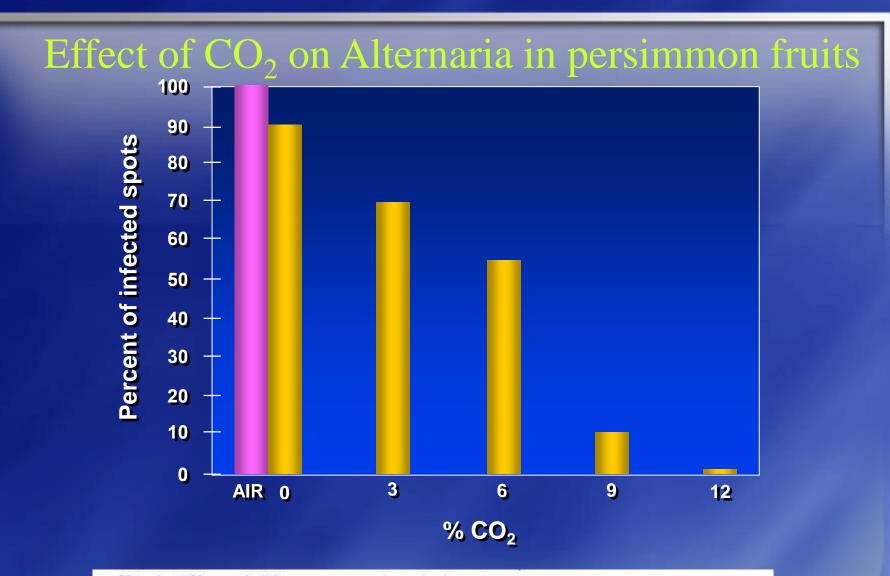
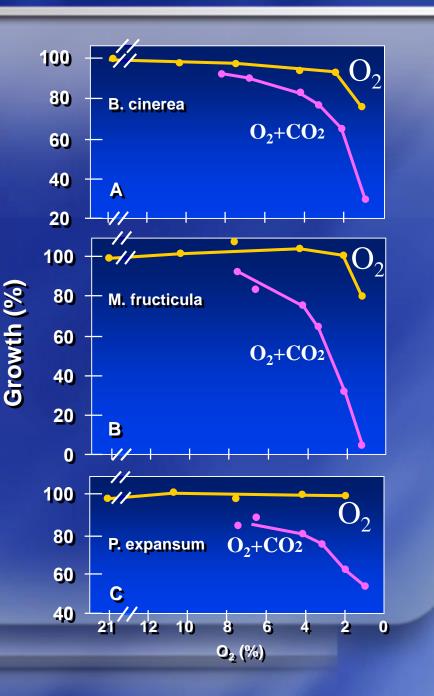



Fig 8. Effect of CO₂ concentration during 4 months of controlled-atmosphere storage at 0°C on decay development (percentage) on persimmon cv. Triumph fruits inoculated with *Alternaria alternata* prior to storage. SE = 4.3 ($P \le 0.05$). Results illustrated were from one experiment.

Combination of low O₂ / high CO₂ Additive effect The concentrations used ranged between 2-4% O₂ 5-7% CO₂ This combinations inhibit, respiration, delay ripening, and prevent decay development.

Suppression of postharvest pathogens by oxygen (yellow) or combined with 10% carbon dioxide (red)

Inhibition of disease development by physical treatment

Temperature
Controlled Atmosphere
Modified Atmosphere
Hypobaric conditions

<u>Storage at Hypobaric atmosphere</u> <u>treatment</u>

Post-harvest treatments using Hypobaric atmospheres

760 mmHg to 76 mmHg

This will result in a decrease in reduction of O₂ from 21% to 2%

This effect will result in the delay of ripening and decay development.

Summary:

Inhibition of disease development by physical treatment is not so easy!!! Temperature **Controlled Atmosphere Modified Atmosphere Hypobaric conditions**

Inhibition of disease development by physical treatment is not enough

Physical Factors affecting disease development after harvest

Complicated because dependent on the pathogen, period of infection, concentration of the pathogen 1. Physical Factors affecting disease development after harvest

2. Prevention of diseases development