

Cultivated meat: Cells and cell differentiation

Module content

- Cell overview
- Stem cells
- iPSCs
- Satellite cells
- Fibroblasts
- Adipocytes

Cells for biotechnology

- Building block of life
- Multiply
- Functionality
- Thousands of different molecules

Cells of interest

- Single cell organisms
 - Adaptive
 - Focus on proliferation, nutrients
 - All-in-one
- <u>Multicellular organisms</u>
 - Sensitive
 - Proliferation regulation
 - Vascularization
 - Specific functionality
 - Adherent cells

Tissues

- Hierarchical designed structures
- Extracellular matrix (ECM)

Stem cells

- A stem cell is a cell defined by its ability to <u>self-renew</u> and <u>differentiate</u>
- Cell potency is defined by a cell's ability to differentiate into other cell types
 - <u>toti</u>potent all cells
 - <u>pluri</u>potent all cell lineages (endoderm, ectoderm, mesoderm)
 - o <u>multipotent</u> many cell types
 - o <u>oligo</u>potent some cell types
 - o <u>uni</u>potent one cell type

Pluripotency and cell reprogramming

- Embryonic stem cells are obtained from the inner cell mass of an embryo during the blastocyst stage
 - Challenging to do with delicate materials and variable growth conditions
- In 2012, Shinya Yamanaka won the Nobel Prize for induced pluripotency, a form of cell reprogramming
- Cell reprogramming enables the direct conversion of one cell type into any other cell type based on the expression of a defined set of important genes of the final cell type, typically a set of transcription factors
- Induced pluripotent stem cells (iPSCs) are functionally identical to embryonic stem cells and significantly easier to obtain

Mesenchymal stem cells

- Mesenchymal stem cells (MSCs) are multipotent stem cells that differentiate into a variety of cell types
- Can be obtained from bone marrow, adipose tissue, umbilical cord, dental pulp, etc
- How to specifically define these stem cells is an active scientific debate

Satellite cell & myoblasts

- Satellite cells are the resident stem cell population in skeletal muscle. They lie quiescent under the "basal lamina" until activated upon injury or stress.
- Activated satellite cells are called myoblasts
- Obtained by a muscle biopsy
- Generally considered to be unipotent in that they give rise to skeletal myocytes

Myogenesis

 During injury, activated <u>myoblasts</u> differentiate into myocytes. <u>Myocytes</u> eventually fuse together, differentiating into multinucleated <u>myotubes</u>, which make up <u>myofibrils</u>.

Myogenesis

- Mature myofibrils form a complete muscle fiber.
- The structural unit of the myofibril is called the <u>sarcomere</u>. The sarcomere is organized by specific proteins that permit contraction through sliding.
- The two most important proteins are **actin** and **myosin**
- Actin makes up the thin filaments of the I band, whereas myosin makes up thick filaments of the A band.
 Additional proteins serve as anchor points and allow the actin-myosin unit to contract.

Cell types used in cultivated meat production

Myogenesis induction

Myotube

bFGF prevent myogenesis

bFGF - basic fibroblast growth factor

Myogenesis quantification

Bovine satellite cells (BSC)

• First CM burger

P38 inhibitor maintain BSC stemness

Ding et al (2018)

BSC on micro-carriers

в

Day 1

CellBIND®

Cytodex®

Synthemax®

BSC co-culture on TVP scaffolds

Ben-Arye et al (2020)

Directed Differentiation of Pluripotent Stem Cells

• Timing varies between species

Transgenic Methods for Myogenic Improvements

Immortalization

• Spontaneous immortalization

Transgenic Methods for Myogenic Improvements

Immortalization

Spontaneous immortalization •

Clonal populations propagated for >6 months, >20 passages

Transgenic Methods for Myogenic Improvements

28% increase in proliferation rates

Transgene-Free Methods for Myogenic Improvements

• Addition of the exerkine Apelin increases muscle stem cell proliferation

 Addition of cytokines IL-1α, IL-13, TNF-α, and IFN-γ permit serial passaging of muscle stem cells

Fibroblasts

- Produce ECM (Extracellular Matrix)
- Not a single cell type
- Robust
 - Not sensitive to culture conditions
 - Short cell cycle
 - Simple isolation
- Different fibroblasts per tissue

ECM (extracellular matrix)

- Acellular part of meat
 - tissue elasticity
 - nutrients
 - cell adherence
 - 3D environment
 - Cell regulations
 - Changes during tissue development

Skeletal muscle ECM

- Epimysium: envelops the entire muscle
- Perimysium: honeycomb structure, compartmentalize fascicles (bundles of muscle fibers)
- Endomysium: fills the gaps between the muscle fibers
- Fibroblast should recapitulate the endomysium. Perhaps also develop the epimysium.

Skeletal muscle ECM

- Epimysium: envelops the entire muscle
- Perimysium: compartmentalize fascicles (bundles of muscle fibers)
- Endomysium: fills the gaps between the muscle fibers
- Fibroblast should recapitulate the endomysium. Perhaps also develop the epimysium.

Skeletal muscle ECM

- Epimysium: envelops the entire muscle
- Perimysium: compartmentalize fascicles (bundles of muscle fibers)
- Endomysium: fills the gaps between the muscle fibers
- Fibroblast should recapitulate the endomysium. Perhaps also develop the epimysium.

Fibroblasts

- Dermal fibroblast
- Skeletal muscle fibroblasts
- Embryonic fibroblasts
- Other supporting cell types
 - Smooth muscle cells
 - Mesenchymal stem cells
 - Dental pulp stem cells

Fibroblasts sources

Cell isolation

• Fibro-adipogenic precursor (FAP) cells

Intramuscular fat (IMF)

- Accounts for 80% of the muscle fat
- Also termed marbling
- meat quality, juiciness, flavor, tenderness and nutritional value

Adipocyte sources

- Adipocytes do not proliferate
- MSC differentiation (e.g. FAP cells)
- Can also be differentiated from Satellite Cells and fibroblasts

Adipogenic differentiation

- Adipogenesis differentiation into adipocytes
- Lipogenesis accumulation of triglycerides.

Lipogenesis

• Triglyceride synthesis in adipocytes

