Dr Johann Elbaz received his PhD from The Hebrew University of Jerusalem. He then conducted his postdoctoral research in the Department of Biological Engineering at MIT working with Prof. Christopher Voigt. He has pursued research in diverse areas ranging from chemistry to synthetic biology with applications in biosensing, nanotechnology and biotechnology. Recently, he joined the Department of Molecular Microbiology and Biotechnology at Tel Aviv University as an Assistant Professor. His lab is interested on engineering genetically organisms for the expression of “living artificial materials” for applications in Synthetic Biology and Nanotechnology.
Dr. Johann Elbaz

Biography
CV
Education
2008-2012 PhD, Chemistry, The Hebrew University of Jerusalem
2006-2008 Master, Chemistry, The Hebrew University of Jerusalem
2003-2006 BSc, Biophysics, Bar-Ilan University
Academic Appointment
2016 Department of Molecular Microbiology and Biotechnology, Tel Aviv University
2012-2016 Postdoctoral Fellow, Synthetic Biology, Massachusetts Institute of Technology (MIT)
Honors and Awards
2013 - Integrated DNA Technology (IDT) Postdoctoral Award
2012 - EMBO Long Term Postdoctoral Fellowship
2012 - The prize for excellent students in nanoscience and nanotechnology, The Harvey M. Krueger center for nanoscience and nanotechnology, The Hebrew university of Jerusalem
2008 - Converging Technologies Fellowship (Israel Science Foundation) for PhD studies
2007 - Converging Technologies Fellowship (Israel Science Foundation) for Master studies
Research Interests
My lab is conducting a highly interdisciplinary research at the interface of biology, chemistry and material sciences with applications for Synthetic Biology, Nanotechnology and Biotechnology.
Cells are the most sophisticated machinery producing selectively and simultaneously hundreds of thousands of complex molecules. Our group is developing and applying new synthetic molecular biology pathways for the bioproduction of “living molecules” in bacteria. These molecules may exhibit intriguing functions with diverse in vivo applications, from medicine to energy or offering a production route of new classes of materials holding interesting physical capabilities (optics, electronics or catalysts).
In this context, my lab is currently focusing on developing synthetic biological tools for the expression of oligonucleotides and their self-assemblies into DNA nanostructures in bacteria. Defined DNA nanostructures inside living cells are investigated to confine and enhance specific chemical reactions for metabolic engineering or to study the effects of spatial localization on multi-component biomolecular pathways.
Recent Publications
31. Elbaz J., Peng Y., Voigt C. A. Genetic Encoding Assembly of DNA Nanostructures in Living Bacteria. Nature Communications (2016) doi:10.1038/ncomms11179.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838831/
30. Cecconello A., Lu C.H., Elbaz J., Willner I. Au nanpparticle/DNA rotaxane hybrid nanostructures exhibiting switshable fluorescence properties. Nano Letters (2013) 13, 6275-6280.
http://www.ncbi.nlm.nih.gov/pubmed/24245996
29. Elbaz J., Cecconello A., Fan Z., Govorov A.O., Willner I. Powering the Programmed Nanostructure and Function of Gold Nanoparticles with Catenated DNA machines. Nature Communications (2013) 4:2000.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709512/
28. Lu, C-H., Cecconello A., Elbaz J., Credi A., Willner I. A Three-Station DNA Catenane Rotary Motor with Controlled Directionality. Nano letters (2013), 13, 2303-2308.
http://www.ncbi.nlm.nih.gov/pubmed/23557381
27. Wang Z-G, Elbaz J., Willner I. A Dynamically Programmed DNA Transporter. Angew. Chem. Int. Ed. (2012) 51:4322-4326.
http://www.ncbi.nlm.nih.gov/pubmed/22447738
26. Elbaz J., Willner I. Nanorobots Grab Cellular Control. Nature Materials (2012) 11:276-277. (News and Views)
http://www.ncbi.nlm.nih.gov/pubmed/22437787
25. Wang F.*, Elbaz J.*, Willner I. Enzyme-Free Amplified Detection of DNA By An Autonomous Ligation DNAzyme Machinery. J. Am. Chem. Soc. (2012) 134:5504–5507. (* Equal contribution)
http://www.ncbi.nlm.nih.gov/pubmed/22404383
24. Elbaz J., Wang F., Remacle F., Willner I. pH-Programmable DNA Logic Arrays Powered By Modular DNAzymes Libraries. Nano Letters (2012) 12(12):6049-54.
http://www.ncbi.nlm.nih.gov/pubmed/22295948
23. Elbaz J., Wang Z-G., Wang F., Willner I. Programmable Dynamic Topologies in DNA Catenanes. Angew. Chem. Int. Ed. (2012) 51:2349-2353.
http://www.ncbi.nlm.nih.gov/pubmed/22287100
22. Wang F., Elbaz J., Orbach R., Magen N., Willner I. Amplified Analysis of DNA By The Autonomous Assembly of Polymers Consisting of DNAzyme Wire. J. Am.Chem. Soc. (2011) 133: 17149-17151.
http://www.ncbi.nlm.nih.gov/pubmed/21954996
21. Wang ZG.*, Elbaz J.*, Willner I. DNA Machines: Bipedal Walker and Stepper. Nano letters (2011) 12: 304-309. (* Equal contribution)
http://www.ncbi.nlm.nih.gov/pubmed/21166467
20. Shimron S., Magen N., Elbaz J., Willner I. pH-Programmable Nanostructures. Chem. Comm. (2011) 31: 8787-8789.
http://www.ncbi.nlm.nih.gov/pubmed/21731946
19. Wang F., Elbaz J., Teller C., Willner I. Amplified Detection of DNA Through An Autocatalytic And Catabolic DNAzyme-Mediated Process. Angew.Chem.Int.ed. (2011) 50: 295-299.
http://www.ncbi.nlm.nih.gov/pubmed/21082638
18. Wang ZG*, Elbaz J.*, Remacle F., Levine R.D., Willner I. All-DNA Finite-State Automata With Finite Memory. Proc. Natl. Acad. Sci. U.S.A. (2010) 107: 21996-22001. (*equal contribution)
http://www.ncbi.nlm.nih.gov/pubmed/21135212
17. Elbaz J., Lioubashevski O., Wang F., Remacle F., Levine R.D., Willner I. DNA Computing Circuits Using Libraries of DNAzyme Subunits. Nature Nanotechnology (2010) 5: 417-422.
http://www.ncbi.nlm.nih.gov/pubmed/20512129
16. Pelossof G., Tel-Vered R., Elbaz J., Willner I. Amplified Biosensing Using the Horseradish Peroxidase-Mimicking DNAzyme as an Electrocatalyst. Anal. Chem. (2010) 82: 4396-4402.
http://www.ncbi.nlm.nih.gov/pubmed/20441165
15. Mor-Piperberg G., Tel-Vered R., Elbaz J., Willner I. Nanoengineered Electrically Contacted Enzymes on DNA Scaffolds: Functional Assemblies for the Selective Analysis of Hg2+ Ions.(2010) J. Am. Chem. Soc. 132: 6878-6880. http://www.ncbi.nlm.nih.gov/pubmed/20426465
14. Frasconi M., Tel-Vered R, Elbaz J., Willner I. Electrochemically Stimulated pH Changes: A Route to Control Chemical Reactivity. J. Am. Chem. Soc. (2010) 6:2029-2036.
http://www.ncbi.nlm.nih.gov/pubmed/20095604
13. Elbaz J., Shimron S., Willner I. pH-Triggered Switchable Mg2+-Dependent DNAzymes. Chem. Commun. (2010) 46: 1209-1211
http://www.ncbi.nlm.nih.gov/pubmed/20449252
12. Shimron S., Elbaz J., Henning A., Willner I. Ion-Induced DNAzyme Switches. Chem. Commun. (2010) 46: 3250-3252.
http://www.ncbi.nlm.nih.gov/pubmed/20442880
11. Elbaz J., Wang ZG, Orbach R., Willner I. pH-Stimulated Concurrent Mechanical Activation of Two DNA “Tweezers”. A “SET−RESET” Logic Gate System. Nano letters (2009) 12: 1196-2000.
http://www.ncbi.nlm.nih.gov/pubmed/19835388
10. Shlyahovsky B., Li Y., Lioubashevski O., Elbaz J. Willner I. Logic Gates and Antisense DNA Devices Operating on a Translator Nucleic Acid Scaffold. ACS Nano (2009) 7: 1831-1843.
http://www.ncbi.nlm.nih.gov/pubmed/19507821
9. Elbaz J., Moshe M., and Willner I. Coherent Activation of DNA Tweezers: a "SET-RESET" Logic System. Angew.Chem.Int.ed (2009) 48: 3834-3837.
http://www.ncbi.nlm.nih.gov/pubmed/19378312
8. Moshe M., Elbaz J., Willner I. Sensing of UO22+ and Design of Logic Gates by the Application of Supramolecular Constructs of Ion-Dependent DNAzymes. Nano letters (2009) 9: 1196-2000.
http://www.ncbi.nlm.nih.gov/pubmed/19199475
7. Elbaz J., Tel-Vered R., Freeman R., Yildiz H.B., and Willner I. Switchable Motion of DNA on Solid Supports. Angew.Chem.Int.ed. (2009) 48: 133-137.
http://www.ncbi.nlm.nih.gov/pubmed/19035378
6. Elbaz J., Moshe M., Shlyahovsky B., Willner I. Cooperative Multi-Component Self-Assembly of Nucleic Acids Structures for the Activation of DNAzyme Cascades: A Paradigm for DNA Sensors and Aptasensors. Chem. Eur. J. (2009) 15: 3411-3418.
http://www.ncbi.nlm.nih.gov/pubmed/19206117
5. Freeman R., Li Y., Tel-Vered R., Sharon E., Elbaz J., Willner I. Self-Assembly of Supramolecular Aptamer Structures for Optical or Electrochemical Sensing. The Analyst (2009) 134: 653-656.
http://www.ncbi.nlm.nih.gov/pubmed/19305912
4. Elbaz J., Shlyahovsky B., Willner I. A DNAzyme Cascade for the Amplified Detection of Pb2+ Ions or L-Histidine. Chem. Commun. (2008) 13: 1569-1571.
http://www.ncbi.nlm.nih.gov/pubmed/18354802
3. Elbaz J., Shlyahovsky B., Li D., Willner I. Parallel Analysis of Two Analytes in Solutions or Surfaces using a Bifunctional Aptamer: Applications for Biosensing and Logic Gate Operations. ChemBioChem (2007) 9: 232-239.
http://www.ncbi.nlm.nih.gov/pubmed/18161727
2. Freeman R., Elbaz J., Gill R., Zayats M., Willner I. Analysis of Dopamine and Tyrosinase Activity on Ion-Sensitive Field-Effect Transistor (ISFET) Devices. Chem.Eur.J. (2007) 13: 7288-7293.
http://www.ncbi.nlm.nih.gov/pubmed/17685382
1. Li D., Shlyahovsky B., Elbaz J., Willner I. Amplified Analysis of Low Molecular Weight Substrates or Proteins by the Self-Assembly of DNAzyme-Aptamer Conjugates. J. Am. Chem. Soc. (2007) 129: 5804-5805.